Algorithms: Elementary Graph Algorithms
(BFS, DFS, TOPOLOGICAL SORT)

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 14, 08.04.2025

A graph G = (V, E) consists of
> a vertex set V
> an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph Directed Graph

How to represent a graph in the computer?

Lecture 14, 08.04.2025

Adjacency Lists

> Array Adj of |V/| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Undirected Graph Adjacency list Adj

Lecture 14, 08.04.2025

Adjacency Lists

> Array Adj of |V/| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Directed Graph Adjacency list Adj

Lecture 14, 08.04.2025

Adjacency Lists

> Array Adj of |V/| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

> In pseudocode, we will denote the array as attribute G.Adj, so we
will see notation such as G.Adj[u].

Directed Graph Adjacency list Adj

Lecture 14, 08.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Undirected Graph Adjacency matrix
1 2 3 45
1{o 1001
21101 1 1
3/0 1 01 0
410 1 1 0 1
5/1 1.0 1 0

Lecture 14, 08.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Directed Graph Adjacency matrix
123456
1{fo1 0100
20000010
30000 11
4/0 1000 0
s5[looo0o 100
6(0 00001

Lecture 14, 08.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = O(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u: ©(V)

Time: to determine whether Time: to determine whether
(u,v) € E: O(degree(u)) (u,v) € E: ©(1)

We can extend both representations to include other attributes such as
edge weights

Lecture 14, 08.04.2025

TRAVERSING/SEARCHING A GRAPH

Lecture 14, 08.04.2025

Breadth-First Search

Definition

INPUT: Graph G = (V/, E), either directed or undirected and
source vertex s € V

OUTPUT: v.d = distance (smallest number of edges) from s to v,
forallveV

Idea:
> Send a wave out from s
> First hits all vertices 1 edge from s

> From there, hits all vertices 2 edges from s ...

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = nil

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = nil

Lecture 14, 08.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
» O(V) because each vertex enqueued at most once

» O(E) because every vertex dequeued at most once and we examine
(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = nil

Lecture 14, 08.04.2025

Depth-First Search

Definition

INPUT: Graph G = (V, E), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v.d = discovery time and
v.f = finishing time

Idea:
> Methodically explore every edge
> Start over from different vertices as necessary

> As soon as we discover a vertex explore from it,

> Unlike BFS, which explores vertices that are close to a source
first

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/16

2/7
9/10

3/4 5/6 14/15

time = 16

Lecture 14, 08.04.2025

Pseudocode of DFS

DFS(G)
for eachu € G.V
u.color = WHITE
time = 0
for eachu € G.V
if u.color == WHITE
DFS-VIsSIT(G, u)

Lecture 14, 08.04.2025

DFS-VISIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adj[u]
if v.color == WHITE
DFS-VisIT(v)
u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/16
2/7
9/10
3/4 5/6 14/15
time = 16

Lecture 14, 08.04.2025

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis: ©(V + E)
> ©(V) because each vertex is discovered once

> O(E) because each edge is examined once if directed graph and
twice if undirected graph.

Lecture 14, 08.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

Lecture 14, 08.04.2025

Parenthesis theorem

For all u, v exactly one of the following holds

ud<uf<vd<v.forv.d<v.f<ud< u.f and neither of u
and v are descendant of each other

u.d<v.d<v.f<u.f and v is a descendant of u

v.d < u.d < u.f <v.f and u is a descendant of v.

3/4 5/6

Lecture 14, 08.04.2025

White-path theorem

Vertex v is a descendant of v if and only if at time u.d there is a path
from u to v consisting of only white vertices (except for u, which was
just colored gray)

3/4 5/6

Lecture 14, 08.04.2025

TOPOLOGICAL SORT

Lecture 14, 08.04.2025

Topological sort

Definition

INPUT: A directed acyclic graph (DAG) G = (V, E)

OUTPUT: a linear ordering of vertices such that if (u, v) € E, then u
appears somewhere before v

Lecture 14, 08.04.2025

Getting dressed in the morning:

in which order?

Lecture 14, 08.04.2025

When is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

Lecture 14, 08.04.2025

When is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge

Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C. At time v.d vertices in C form a white-path from v to v and hence u is a
descendant of v.

Lecture 14, 08.04.2025

Algorithm for topological sort

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Example

11/16

watch) 9/10
12/15

13/14

S -
(ndrshorts) >) = shosy) TEORONTS

17/18 11/16 12/15 13/14 9/10 178 6/7 2/5 3/4

Lecture 14, 08.04.2025

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

> Can just output vertices as they are finished and understand that
we want the reverse of the list

> Or put them onto the front of a linked list as they are finished.
When done, the list contains vertices in topologically sorted order.

Time: ©(V 4+ E) (same as DFS)

Lecture 14, 08.04.2025

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?
> uis gray

> Is v gray, too?
> No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

v

Is v white?
> Then becomes descendant of u. By parenthesis theorem,
ud<vd<v.f<u.f
Is v black?

> Then v is already finished. Since we are exploring (u, v), we
have not yet finished u. Therefore, v.f < u.f.

&

v

Lecture 14, 08.04.2025

> Graphs fundamental object to study
> Representation either by adjacency list or adjacency matrix

> Two natural ways of traversing a graph: breadth-first search and
depth-first search

> Topological sort of acyclic graphs by applying DFS and then order
according to decreasing finishing times

Lecture 14, 08.04.2025

